论文标题
REDE:端到端对象6D使用可区分的异常值消除构成强大的估计
REDE: End-to-end Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination
论文作者
论文摘要
对象6D姿势估计是许多应用程序中的基本任务。常规方法通过检测和匹配关键点,然后估计姿势来解决任务。由于手工制作的特征设计,最近的努力使深度学习主要克服了传统方法对环境变化的脆弱性。但是,这些方法无法同时实现端到端的学习和良好的解释性。在本文中,我们建议使用RGB-D数据REDE,这是一种新颖的端到端对象姿势估计器,该估计器利用网络进行关键点回归,以及一个可区分的几何姿势估计器,用于姿势错误后传播。此外,为了实现异常关键点预测的更好鲁棒性,我们进一步提出了一种可区分的离群方法,可以同时回归候选结果和置信度。通过多个候选者的置信度加权聚合,我们可以在最终估计中降低离群值的影响。最后,遵循常规方法,我们应用可学习的完善过程来进一步改善估计。三个基准数据集的实验结果表明,Rede的表现略高于最先进的方法,并且对对象闭塞更为强大。
Object 6D pose estimation is a fundamental task in many applications. Conventional methods solve the task by detecting and matching the keypoints, then estimating the pose. Recent efforts bringing deep learning into the problem mainly overcome the vulnerability of conventional methods to environmental variation due to the hand-crafted feature design. However, these methods cannot achieve end-to-end learning and good interpretability at the same time. In this paper, we propose REDE, a novel end-to-end object pose estimator using RGB-D data, which utilizes network for keypoint regression, and a differentiable geometric pose estimator for pose error back-propagation. Besides, to achieve better robustness when outlier keypoint prediction occurs, we further propose a differentiable outliers elimination method that regresses the candidate result and the confidence simultaneously. Via confidence weighted aggregation of multiple candidates, we can reduce the effect from the outliers in the final estimation. Finally, following the conventional method, we apply a learnable refinement process to further improve the estimation. The experimental results on three benchmark datasets show that REDE slightly outperforms the state-of-the-art approaches and is more robust to object occlusion.