论文标题
RACAH代数r($ \ boldsymbol {n} $)和可促进性的嵌入
Embedding of the Racah Algebra R($\boldsymbol{n}$) and Superintegrability
论文作者
论文摘要
排名$ 1 $ racah代数$ r(3)$在可整合系统的理论中起关键作用。它似乎是$ 2 $ -SPHERE上$ 3 $参数系统的对称代数,从中可以通过合适的限制和收缩来获得所有$ 2 $ d的所有二阶共结式型型号。最近已经考虑了$ r(3)$的较高排名概括(3)$,即所谓的RACAH代数$ r(n)$,已被考虑在$(n-1)$ - 球体上的一般抗积型模型的对称代数。在目前的工作中,我们表明,这种代数结构自然出现,嵌入了较大的二次代数内,该代数表征了具有非中心术语的$ n $ n $ d的可整合模型。通过对RACAH和其他发电机的合适(符号或差异)实现,在经典和量子力学中均显示了这一点。在主要结果中,我们为两个$ n $二维的最大富集式模型,Smorodinsky-Winternitz系统和广义开普勒 - 库仑系统提供了明确的对称代数的明确结构。对于这两个家庭来说,底层对称代数都是较高的二次代数,其中包含RACAH代数$ r(n)$作为sibalgebra。在经典和量子框架中也获得了完整二次代数的发电机之间的高阶代数关系。这些结果应为在可整合系统的背景下进一步理解二次代数的结构的进一步理解。
The rank-$1$ Racah algebra $R(3)$ plays a pivotal role in the theory of superintegrable systems. It appears as the symmetry algebra of the $3$-parameter system on the $2$-sphere from which all second-order conformally flat superintegrable models in $2$D can be obtained by means of suitable limits and contractions. A higher rank generalization of $R(3)$, the so-called rank $n-2$ Racah algebra $R(n)$, has been considered recently and showed to be the symmetry algebra of the general superintegrable model on the $(n-1)$-sphere. In the present work, we show that such an algebraic structure naturally arises as embedded inside a larger quadratic algebra characterizing $n$D superintegrable models with non-central terms. This is shown both in classical and quantum mechanics through suitable (symplectic or differential) realisations of the Racah and additional generators. Among the main results, we present an explicit construction of the complete symmetry algebras for two families of $n$-dimensional maximally superintegrable models, the Smorodinsky-Winternitz system and the generalized Kepler-Coulomb system. For both families, the underlying symmetry algebras are higher-rank quadratic algebras containing the Racah algebra $R(n)$ as subalgebra. High-order algebraic relations among the generators of the full quadratic algebras are also obtained both in the classical and quantum frameworks. These results should shed new light to the further understanding of the structures of quadratic algebras in the context of superintegrable systems.