论文标题

瓦斯恒星分布强大的支持向量机的快速基于题投影的增量算法

Fast Epigraphical Projection-based Incremental Algorithms for Wasserstein Distributionally Robust Support Vector Machine

论文作者

Li, Jiajin, Chen, Caihua, So, Anthony Man-Cho

论文摘要

Wasserstein \ textbf {d}从\ textbf {r} obust \ textbf {o} ptimization(dRO)关注的是,从一个以某种名义分布为中心的wasserstein球中最差的概率分布中得出的数据,这些决策良好。近年来,已经表明,学习模型的各种DRO公式都可以接纳可访问的凸面重新启动。但是,大多数现有的作品都建议通过通用求解器解决这些凸的重新进行,这些求解器不适合解决大规模问题。在本文中,我们专注于Wasserstein分布稳健的支持向量机(DRSVM)问题,并提出了两种新型的基于Epraphical投射的增量算法来解决它们。这些算法的每种迭代中的更新都可以以高效的方式计算。此外,我们表明本文考虑的DRSVM问题满足了Hölderian的生长条件,并明确确定了生长指数。因此,我们能够建立所提出的增量算法的收敛速率。我们的数值结果表明,所提出的方法比最先进的数量级更快,并且随着问题大小的增加,性能差距会大大增长。

Wasserstein \textbf{D}istributionally \textbf{R}obust \textbf{O}ptimization (DRO) is concerned with finding decisions that perform well on data that are drawn from the worst-case probability distribution within a Wasserstein ball centered at a certain nominal distribution. In recent years, it has been shown that various DRO formulations of learning models admit tractable convex reformulations. However, most existing works propose to solve these convex reformulations by general-purpose solvers, which are not well-suited for tackling large-scale problems. In this paper, we focus on a family of Wasserstein distributionally robust support vector machine (DRSVM) problems and propose two novel epigraphical projection-based incremental algorithms to solve them. The updates in each iteration of these algorithms can be computed in a highly efficient manner. Moreover, we show that the DRSVM problems considered in this paper satisfy a Hölderian growth condition with explicitly determined growth exponents. Consequently, we are able to establish the convergence rates of the proposed incremental algorithms. Our numerical results indicate that the proposed methods are orders of magnitude faster than the state-of-the-art, and the performance gap grows considerably as the problem size increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源