论文标题
使用显着图对眼睛追踪数据进行分类
Classifying Eye-Tracking Data Using Saliency Maps
论文作者
论文摘要
文献中的大量研究表明,人类眼睛固定模式如何取决于不同的因素,包括遗传学,年龄,社会功能,认知功能等。对视觉关注的这些变化的分析已经引起了两个潜在的研究途径:1)确定受试者的生理或心理状态,以及2)预测与记录的眼睛固定数据相关的任务。为此,本文提出了一种基于视觉显着性的新型特征提取方法,用于对眼部跟踪数据的自动和定量分类,该方法适用于两个研究方向。该方法没有直接从固定数据中提取特征,而是采用了几种众所周知的视觉注意力计算模型来预测眼睛固定位置作为显着图。比较显着性图的显着性振幅,相似性和相似性与相应的眼睛固定图可提供额外的信息尺寸,从而有效地利用这些尺寸来生成歧视性特征来对眼睛追踪数据进行分类。使用显着性4ASD,年龄预测和视觉感知任务数据集进行了广泛的实验表明,我们基于显着的功能可以实现出色的性能,从而优于先前的最新方法。此外,与现有的应用特定解决方案不同,我们的方法表明了现实生活领域的三个不同问题的性能改善:自闭症谱系障碍筛选,幼儿的年龄预测以及人类的视觉感知任务分类,从而提供了一个普遍的范式,从而提供了更准确的分类中额外信息固有的固有信息。
A plethora of research in the literature shows how human eye fixation pattern varies depending on different factors, including genetics, age, social functioning, cognitive functioning, and so on. Analysis of these variations in visual attention has already elicited two potential research avenues: 1) determining the physiological or psychological state of the subject and 2) predicting the tasks associated with the act of viewing from the recorded eye-fixation data. To this end, this paper proposes a visual saliency based novel feature extraction method for automatic and quantitative classification of eye-tracking data, which is applicable to both of the research directions. Instead of directly extracting features from the fixation data, this method employs several well-known computational models of visual attention to predict eye fixation locations as saliency maps. Comparing the saliency amplitudes, similarity and dissimilarity of saliency maps with the corresponding eye fixations maps gives an extra dimension of information which is effectively utilized to generate discriminative features to classify the eye-tracking data. Extensive experimentation using Saliency4ASD, Age Prediction, and Visual Perceptual Task dataset show that our saliency-based feature can achieve superior performance, outperforming the previous state-of-the-art methods by a considerable margin. Moreover, unlike the existing application-specific solutions, our method demonstrates performance improvement across three distinct problems from the real-life domain: Autism Spectrum Disorder screening, toddler age prediction, and human visual perceptual task classification, providing a general paradigm that utilizes the extra-information inherent in saliency maps for a more accurate classification.