论文标题

视频编码中基于CNN的过滤器的QP自适应机制

A QP-adaptive Mechanism for CNN-based Filter in Video Coding

论文作者

Liu, Chao, Sun, Heming, Katto, Jiro, Zeng, Xiaoyang, Fan, Yibo

论文摘要

基于卷积的神经网络(CNN)过滤器在视频编码方面取得了巨大成功。但是,在大多数以前的工作中,每个量化参数(QP)频段都需要单个模型。本文提出了一种通用方法,可以帮助任意CNN滤波器处理不同的量化噪声。我们对量化噪声问题进行建模,并在CNN上实现可行的解决方案,该解决方案将量化步骤(QSTEP)引入卷积。当量化噪声增加时,CNN滤波器抑制噪声的能力会相应提高。该方法可直接用于替换任何现有CNN滤波器中的(香草)卷积层。通过仅使用25%的参数,所提出的方法比使用具有VTM-6.3锚的多个模型更好的性能。此外,通过我们提出的色度成分方法,还可以实现0.2%的额外的BD率降低。

Convolutional neural network (CNN)-based filters have achieved great success in video coding. However, in most previous works, individual models are needed for each quantization parameter (QP) band. This paper presents a generic method to help an arbitrary CNN-filter handle different quantization noise. We model the quantization noise problem and implement a feasible solution on CNN, which introduces the quantization step (Qstep) into the convolution. When the quantization noise increases, the ability of the CNN-filter to suppress noise improves accordingly. This method can be used directly to replace the (vanilla) convolution layer in any existing CNN-filters. By using only 25% of the parameters, the proposed method achieves better performance than using multiple models with VTM-6.3 anchor. Besides, an additional BD-rate reduction of 0.2% is achieved by our proposed method for chroma components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源