论文标题

$ \ Mathcal {n} =(2,2)$边界条件的Abelian镜像对称性

Abelian mirror symmetry of $\mathcal{N}=(2,2)$ boundary conditions

论文作者

Okazaki, Tadashi

论文摘要

我们评估$ \ Mathcal {n} =(2,2)$ \ bps边界条件的半指数在3D $ \ MATHCAL {n} = 4 $ supersympersymmetrical Abelian仪表理论中。我们确认Neumann边界条件对其镜像理论的通用Dirichlet边界条件是双重的,因为半折磨彼此完全匹配。我们发现,定义量子库仑和希格斯分支代数的Verma模块的特殊差异边界条件之间的天真镜像对称性并不总是保持。从椭圆形稳定包膜获得的三角矩阵描述了针对特殊的迪希特边界条件的半个指数集合的精确镜面转换。

We evaluate half-indices of $\mathcal{N}=(2,2)$ half-BPS boundary conditions in 3d $\mathcal{N}=4$ supersymmetric Abelian gauge theories. We confirm that the Neumann boundary condition is dual to the generic Dirichlet boundary condition for its mirror theory as the half-indices perfectly match with each other. We find that a naive mirror symmetry between the exceptional Dirichlet boundary conditions defining the Verma modules of the quantum Coulomb and Higgs branch algebras does not always hold. The triangular matrix obtained from the elliptic stable envelope describes the precise mirror transformation of a collection of half-indices for the exceptional Dirichlet boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源