论文标题
在2010年和2014年的Blazar 3C 454.3的弹性特征行为差异和光谱特征行为的差异
Multiwavelength analysis and the difference in the behavior of the spectral features during the 2010 and 2014 flaring periods of the blazar 3C 454.3
论文作者
论文摘要
多年来,平面光谱无线电排3c〜454.3呈现出很高的活性阶段(耀斑),其中不同的波带大大增加了磁通量。在这项工作中,我们进行了从无线电到伽马射线的多波强长分析,并研究Mg〜II〜 $λ2798$Å发射线和2008-2018的UV〜FE〜II频段。我们发现,准平台分量C的43 GHz通量密度增加,与估计的时间相吻合,在该估计的时间中,从无线电核心弹出的超光孔(导致2010年最亮的火炬)与准平稳的组件相撞(在$ \ sim4.6 $ pc pc pc pc pc pc coldeptionary组件(预定的距离)。频谱索引在第一个($ 5000 <\ text {jd} -2450000 <5600 $)和第二个($ 6600 <\ text {jd} -2450000 <7900 $)燃烧时期表明,物理条件的变化。第二阶段的复杂性质可能是在不同位置叠加多个事件的结果。 Mg〜II与UV-Continuum具有抗相关性,而Fe〜II呈正相关。除了在2010年最亮的耀斑时期,当时两者在高连续体的光度下都有强烈的反应。我们的结果表明,第一个燃烧时期的主要伽马射线排放机制是康普顿外部。在第二张耀斑期间,种子光子发射区域与伽马射线发射区域是共同空间的。但是,需要使用多Zone射流发射模型进行SED研究,以确认第二阶段的每个有明显耀斑的性质。
The flat-spectrum radio quasar 3C~454.3 throughout the years has presented very high activity phases (flares) in which the different wavebands increase their flux dramatically. In this work, we perform multiwavelength analysis from radio to gamma-rays and study the Mg~II~$λ2798$Å emission line and the UV~Fe~II band from 2008-2018. We found that an increase in the 43 GHz flux density of the quasi-stationary component C, coincides with the estimated time at which a superluminal blob ejected from the radio core (which caused the brightest flare of 2010) collides with the quasi-stationary component (at a projected distance of $\sim4.6$ pc from the radio core). The spectral index different behavior in the first ($5000 < \text{JD}-2450000 < 5600$) and second ($6600 < \text{JD}-2450000 < 7900$) flaring periods suggest changes in the physical conditions. The complex nature of the second period can be a result of a superposition of multiple events at different locations. The Mg~II has an anti-correlation with the UV-continuum while Fe~II correlates positively. Except by the time of the brightest flare of 2010, when both have a strong response at high continuum luminosities. Our results suggest that the dominant gamma-ray emission mechanism for the first flaring period is External Compton. For the second flaring period the seed photons emission region is co-spatial with the gamma-ray emission region. However, a SED study using a multizone jet emission model is required to confirm the nature of each significant flare during the second period.