论文标题
关于神经网络的反应网络实施
On reaction network implementations of neural networks
论文作者
论文摘要
本文涉及确定性建模的化学反应网络用于实施(进料)神经网络的利用。我们开发了一个一般的数学框架,并证明与神经网络的某些反应网络实现相关的普通微分方程(ODE)具有理想的属性,包括(i)存在模型参数(梯度下降)参数(对于梯度下降)和(ii)与固定点的快速收敛到固定点的初始条件(必要有效的实现)(必要有效的实现)。我们首先在神经网络和ODE系统系统之间建立连接,然后通过使用正确的相关ODE集构建反应网络。我们通过构建一个具有平滑的Relu激活函数的神经网络的反应网络来证明理论,尽管我们还演示了如何概括构造以允许其他激活功能(每个都具有前面列出的理想属性)。由于本文中有多种类型的“网络”,因此我们还对反应网络和神经网络进行了仔细的介绍,以消除这两种设置中的重叠词汇,并清楚地强调每个网络属性的作用。
This paper is concerned with the utilization of deterministically modeled chemical reaction networks for the implementation of (feed-forward) neural networks. We develop a general mathematical framework and prove that the ordinary differential equations (ODEs) associated with certain reaction network implementations of neural networks have desirable properties including (i) existence of unique positive fixed points that are smooth in the parameters of the model (necessary for gradient descent), and (ii) fast convergence to the fixed point regardless of initial condition (necessary for efficient implementation). We do so by first making a connection between neural networks and fixed points for systems of ODEs, and then by constructing reaction networks with the correct associated set of ODEs. We demonstrate the theory by constructing a reaction network that implements a neural network with a smoothed ReLU activation function, though we also demonstrate how to generalize the construction to allow for other activation functions (each with the desirable properties listed previously). As there are multiple types of "networks" utilized in this paper, we also give a careful introduction to both reaction networks and neural networks, in order to disambiguate the overlapping vocabulary in the two settings and to clearly highlight the role of each network's properties.