论文标题

缩放法律流:尝试缩放法律矢量计算的尝试

The scaling-law flows: An attempt at scaling-law vector calculus

论文作者

Yang, Xiao-Jun

论文摘要

在本文中,基于leibniz衍生物和stieltjes积分,与矢量计算与分形几何形状中的缩放定律之间的连接有关的缩放律矢量演算是第一次解决。从缩放法律矢量计算的意义上考虑了高斯 - 遗体类样定理,类似Stokes的定理,类似绿色的定理和绿色的身份。详细获得了类似Navier-Stokes的方程。所获得的结果是作为一种潜在的数学工具,旨在开发一种对缩放法律流的挑战的重要方法。

In this paper, the scaling-law vector calculus, which is related to the connection between the vector calculus and the scaling law in fractal geometry, is addressed based on the Leibniz derivative and Stieltjes integral for the first time. The Gauss-Ostrogradsky-like theorem, Stokes-like theorem, Green-like theorem, and Green-like identities are considered in the sense of the scaling-law vector calculus. The Navier-Stokes-like equations are obtained in detail. The obtained result is as a potentially mathematical tool proposed to develop an important way of approaching this challenge for the scaling-law flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源