论文标题
利用TMP折纸折叠的非线性刚度以增强机器人跳跃性能
Exploiting the Nonlinear Stiffness of TMP Origami Folding to Enhance Robotic Jumping Performance
论文作者
论文摘要
通过数值模拟和实验评估,本研究检查了折纸折叠的使用来开发具有量身定制的非线性刚度的机器人跳跃机制,以提高动态性能。具体而言,我们使用Tachi-Miura Polyhedron(TMP)Bellow折纸 - 表现出非线性“应变软化”力 - 置换曲线 - 作为带有嵌入能量存储的跳跃机器人骨架。 TMP的非线性刚度使其比线性弹簧的能量更多,并提供了改进的跳跃高度和通话时间。此外,可以通过直接更改下面的TMP折痕几何形状来定制非线性。一个关键的挑战是在跳跃之前,在压缩阶段的压缩阶段,将TMP的磁滞和能量损失最小化。因此,我们使用了塑料退火的薄片新兴折纸(古)概念来修饰TMP折痕。 Paleo在发生塑性变形之前增加了折叠极限,从而改善了总应变能的保留。跳跃实验证实,与具有相对线性刚度的“控制” TMP样品相比,非线性TMP机制的空中时间提高了约9%,跳跃高度提高了13%。这项研究的结果验证了在机器人跳跃机制中使用折纸的优势,并证明了利用非线性弹簧元素来改善跳跃性能的好处。因此,他们可以在将来以优化的性能促进一个新的充满活力的跳跃机制。
Via numerical simulation and experimental assessment, this study examines the use of origami folding to develop robotic jumping mechanisms with tailored nonlinear stiffness to improve dynamic performance. Specifically, we use Tachi-Miura Polyhedron (TMP) bellow origami -- which exhibits a nonlinear "strain-softening" force-displacement curve -- as a jumping robotic skeleton with embedded energy storage. TMP's nonlinear stiffness allows it to store more energy than a linear spring and offers improved jumping height and airtime. Moreover, the nonlinearity can be tailored by directly changing the underlying TMP crease geometry. A critical challenge is to minimize the TMP's hysteresis and energy loss during its compression stage right before jumping. So we used the plastically annealed lamina emergent origami (PALEO) concept to modify the TMP creases. PALEO increases the folding limit before plastic deformation occurs, thus improving the overall strain energy retention. Jumping experiments confirmed that a nonlinear TMP mechanism achieved roughly 9% improvement in air time and a 13% improvement in jumping height compared to a "control" TMP sample with a relatively linear stiffness. This study's results validate the advantages of using origami in robotic jumping mechanisms and demonstrate the benefits of utilizing nonlinear spring elements for improving jumping performance. Therefore, they could foster a new family of energetically efficient jumping mechanisms with optimized performance in the future.