论文标题
基于优化的发掘轨迹生成框架
Optimization-Based Framework for Excavation Trajectory Generation
论文作者
论文摘要
在本文中,我们为在各种目标(包括最小关节位移和最小时间)下提供了一种基于优化的新型框架。发掘轨迹生成的传统方法通常将发掘运动分为一系列固定相,从而导致轨迹搜索空间有限。我们的框架探讨了用多项式样条插值的航路点表示的所有可能发掘轨迹的空间,从而在较大的搜索空间上进行了优化。我们通过约束铲斗的瞬时运动来制定开挖的通用任务规范,并进一步添加了面向目标的约束,即表明估计发掘材料量的扫描量。为了制定与时间相关的目标和约束,我们将随路指数之间的时间间隔作为变量引入到优化框架中。我们实施了拟议的框架,并在UR5机器人部门评估其性能。实验结果表明,产生的轨迹能够为不同的地形形状挖掘足够的土壤,并且比传统发掘方法的长度短60%。我们进一步将我们的一阶段时间最佳轨迹生成与两阶段方法进行比较。结果表明,我们一阶段方法产生的轨迹平均成本少18%。
In this paper, we present a novel optimization-based framework for autonomous excavator trajectory generation under various objectives, including minimum joint displacement and minimum time. Traditional methods on excavation trajectory generation usually separate the excavation motion into a sequence of fixed phases, resulting in limited trajectory searching space. Our framework explores the space of all possible excavation trajectories represented with waypoints interpolated by a polynomial spline, thereby enabling optimization over a larger searching space. We formulate a generic task specification for excavation by constraining the instantaneous motion of the bucket and further add a target-oriented constraint, i.e. swept volume that indicates the estimated amount of excavated materials. To formulate time related objectives and constraints, we introduce time intervals between waypoints as variables into the optimization framework. We implement the proposed framework and evaluate its performance on a UR5 robotic arm. The experimental results demonstrate that the generated trajectories are able to excavate sufficient mass of soil for different terrain shapes and have 60% shorter minimal length than traditional excavation methods. We further compare our one-stage time optimal trajectory generation with the two-stage method. The result shows that trajectories generated by our one-stage method cost 18% less time on average.