论文标题

使用PDF重建的CT重建:用于多个扫描几何和剂量水平的参数依赖性框架

CT Reconstruction with PDF: Parameter-Dependent Framework for Multiple Scanning Geometries and Dose Levels

论文作者

Xia, Wenjun, Lu, Zexin, Huang, Yongqiang, Liu, Yan, Chen, Hu, Zhou, Jiliu, Zhang, Yi

论文摘要

基于深度学习的CT重建方法的当前主流通常需要修复扫描几何学和剂量水平,这将大大加剧培训成本,并且需要更多的培训数据以进行临床应用。在本文中,我们提出了一个与参数有关的框架(PDF),该框架(PDF)同时使用多个扫描几何形状和剂量水平训练数据。在拟议的PDF中,几何和剂量水平被参数化,并馈入两个多层感知器(MLP)。利用MLP来调节CT重建网络的特征图,该网络在不同的扫描几何形状和剂量水平上输出的条件。实验表明,我们提出的方法可以获得类似于具有特定几何学和剂量水平的原始网络的竞争性能,这可以有效地节省多个扫描几何形状和剂量水平的额外训练成本。

Current mainstream of CT reconstruction methods based on deep learning usually needs to fix the scanning geometry and dose level, which will significantly aggravate the training cost and need more training data for clinical application. In this paper, we propose a parameter-dependent framework (PDF) which trains data with multiple scanning geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multi-layer perceptrons (MLPs). The MLPs are leveraged to modulate the feature maps of CT reconstruction network, which condition the network outputs on different scanning geometries and dose levels. The experiments show that our proposed method can obtain competing performance similar to the original network trained with specific geometry and dose level, which can efficiently save the extra training cost for multiple scanning geometries and dose levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源