论文标题

序列建议的对比度学习

Contrastive Learning for Sequential Recommendation

论文作者

Xie, Xu, Sun, Fei, Liu, Zhaoyang, Wu, Shiwen, Gao, Jinyang, Ding, Bolin, Cui, Bin

论文摘要

顺序推荐方法在现代推荐系统中起着至关重要的作用,因为它们能够从其历史互动中捕获用户的动态兴趣。尽管他们成功了,但我们认为这些方法通常依赖于顺序预测任务来优化大量参数。他们通常遭受数据稀疏问题的困扰,这使得他们很难学习高质量的用户表示。为了解决这个问题,受到计算机版本中对比度学习技术的最新进展的启发,我们提出了一种新颖的多任务模型,称为\ textbf {c} intrastive \ textbf {l}为\ textbf {s} equartential \ textbf {equartentbf {extbf {rec} recmentation〜(cltextbf {rectementation〜(cltextbf) CL4SREC不仅利用传统的下一个项目预测任务,而且还利用对比度学习框架从原始用户行为序列中得出自学信号。因此,它可以提取更有意义的用户模式,并进一步有效地编码用户表示。此外,我们提出了三种构建自主信号的数据增强方法。在四个公共数据集上进行的广泛实验表明,CL4SREC通过推断出更好的用户表示来实现现有基线的最新性能。

Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a user's dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called \textbf{C}ontrastive \textbf{L}earning for \textbf{S}equential \textbf{Rec}ommendation~(\textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源