论文标题
使用低成本多项式函数对原子环境进行了改进的描述
Improved Description of Atomic Environments using Low-cost Polynomial Functions with Compact Support
论文作者
论文摘要
使用机器学习(ML)技术对化学性质的预测要求一组适当的描述符,这些描述符准确地描述原子,并在较大规模的分子环境中进行描述。关于原子中心对称函数(SF)跨越空间的构象信息的映射已成为使用高维神经网络电位(HDNNP)的能量和力预测的标准技术。但是,建立的以原子为中心的SF在其柔韧性上受到限制,因为它们的功能形式限制了可以采样的角域。在这里,我们引入了一类基于原子中心的对称函数,该函数基于多项式,具有紧凑的支持称为多项式对称函数(PSF),该功能可以免费选择,即涵盖的角和径向域。我们证明,PSF的准确性要么在PAR或相当大于常规原子,以原子为中心的SF的准确性,因此在测试集的实力预测误差降低了某些有机分子的50%。与已建立的原子以原子为中心的SF相反,PSF的计算不涉及任何指数,其内在的紧凑型支持取代了对单独的截止功能的使用。最重要的是,计算此处介绍的多项式SF所需的浮点操作数量大大低于其他SF的浮点操作,无需高度优化的代码结构或缓存即可实现其有效的实施,并具有相对于其他先进的SFS的速度,该程序均具有4.5到5的范围,并且在此范围内效果,并且具有新的平台,并以新的为单位效益。 (GPU)。总体而言,具有紧凑型支持的多项式SF提高了使用HDNNP的能量和力预测的精度,同时就其成熟的对应物实现了显着的加速。
The prediction of chemical properties using Machine Learning (ML) techniques calls for a set of appropriate descriptors that accurately describe atomic and, on a larger scale, molecular environments. A mapping of conformational information on a space spanned by atom-centred symmetry functions (SF) has become a standard technique for energy and force predictions using high-dimensional neural network potentials (HDNNP). Established atom-centred SFs, however, are limited in their flexibility, since their functional form restricts the angular domain that can be sampled. Here, we introduce a class of atom-centred symmetry functions based on polynomials with compact support called polynomial symmetry functions (PSF), which enable a free choice of both, the angular and the radial domain covered. We demonstrate that the accuracy of PSFs is either on par or considerably better than that of conventional, atom-centred SFs, with reductions in force prediction errors over a test set approaching 50% for certain organic molecules. Contrary to established atom-centred SFs, computation of PSF does not involve any exponentials, and their intrinsic compact support supersedes use of separate cutoff functions. Most importantly, the number of floating point operations required to compute polynomial SFs introduced here is considerably lower than that of other SFs, enabling their efficient implementation without the need of highly optimised code structures or caching, with speedups with respect to other state-of-the-art SFs reaching a factor of 4.5 to 5. This low-effort performance benefit substantially simplifies their use in new programs and emerging platforms such as graphical processing units (GPU). Overall, polynomial SFs with compact support improve accuracy of both, energy and force predictions with HDNNPs while enabling significant speedups with respect to their well-established counterparts.