论文标题

构建密集的无网线性$ 3 $ -Graphs

Constructing Dense Grid-Free Linear $3$-Graphs

论文作者

Gishboliner, Lior, Shapira, Asaf

论文摘要

我们表明,有线性$ 3 $ - 均匀的超图,带有$ n $顶点和$ω(n^2)$边缘,不包含$ 3 \ times 3 $ grid的副本。这在Füredi和Ruszinkó的猜想上取得了重大进展。我们还讨论了与$(9,6)$ brown-erdős-sós问题以及Solymosi和Solymosi的问题的相关连接。

We show that there exist linear $3$-uniform hypergraphs with $n$ vertices and $Ω(n^2)$ edges which contain no copy of the $3 \times 3$ grid. This makes significant progress on a conjecture of Füredi and Ruszinkó. We also discuss connections to proving lower bounds for the $(9,6)$ Brown-Erdős-Sós problem and to a problem of Solymosi and Solymosi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源