论文标题

储层计算中的离散时间签名和随机性

Discrete-time signatures and randomness in reservoir computing

论文作者

Cuchiero, Christa, Gonon, Lukas, Grigoryeva, Lyudmila, Ortega, Juan-Pablo, Teichmann, Josef

论文摘要

提出了储层计算现象的几何性质的新解释。文献中将储层计算理解为具有随机选择的复发神经系统和训练有素的线性读数层的输入/输出系统的可能性。通过构建所谓的强烈通用储层系统,作为一种生成Volterra系列扩展的状态空间系统的随机投影,可以通过构建强烈通用的储层系统来散发光。该过程产生一个状态植物储层系统,其系数随机生成的系数在对数相对于原始系统方面降低的尺寸。仅通过训练每个不同过滤器的不同线性读数,该储层系统就可以近似褪色内存过滤器类中的任何元素。陈述了生成投影储层系统所需的概率分布的明确表达式,并提供了近似误差的范围。

A new explanation of geometric nature of the reservoir computing phenomenon is presented. Reservoir computing is understood in the literature as the possibility of approximating input/output systems with randomly chosen recurrent neural systems and a trained linear readout layer. Light is shed on this phenomenon by constructing what is called strongly universal reservoir systems as random projections of a family of state-space systems that generate Volterra series expansions. This procedure yields a state-affine reservoir system with randomly generated coefficients in a dimension that is logarithmically reduced with respect to the original system. This reservoir system is able to approximate any element in the fading memory filters class just by training a different linear readout for each different filter. Explicit expressions for the probability distributions needed in the generation of the projected reservoir system are stated and bounds for the committed approximation error are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源