论文标题

Cayley图形用于外部p组和黄色定理的覆盖图透视图

Cayley graphs for extraspecial p-groups and a covering graph perspective on Huang's theorem

论文作者

Levit, Maxwell

论文摘要

1985年,Arjeh Cohen和Jacques山雀证明了HyperCube的4周无2倍盖。此Cohen-tits覆盖物与Hao Huang去年在他的灵敏度猜想的证明中使用的签名邻接矩阵密切相关。 Terence Tao观察到,可以通过将基本Abelian 2组的功能提升到中央扩展上的功能来理解Huang的签名邻接矩阵。受陶的观察的启发,我们通过构建cohen-tits的覆盖范围,作为cayley的cayley图,是帕斯蒂斯(P-cycles)的两个无限无限的p倍覆盖物的无限家族。

In 1985, Arjeh Cohen and Jacques Tits proved the existence of a 4-cycle-free 2-fold cover of the hypercube. This Cohen-Tits cover is closely related to the signed adjacency matrix that Hao Huang used last year in his proof of the Sensitivity Conjecture. Terence Tao observed that Huang's signed adjacency matrix can be understood by lifting functions on an elementary abelian 2-group to functions on a central extension. Inspired by Tao's observation, we generalize the Cohen-Tits cover by constructing, as Cayley graphs for extraspecial p-groups, two infinite families of 4-cycle-free p-fold covers of the Cartesian product of p-cycles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源