论文标题
Frobenius组的块形式
Block Form of Frobenius Groups
论文作者
论文摘要
本文的目的是将Frobenius组的角色特性应用于组代数的局部块形式。我们首先通过使用组的$ g $的共轭类别的块参与来建立Brauer置换引理的块形式。然后,我们可以定义一对$ g $和其普通子组$ n $之间的一对frobenius对应块。给出了近组条件,以确定一对Frobenius对应块。使用一对Frobenius相应的块,我们研究了其组结构。最后,我们证明了Nilpotent属性与Frobenius相应的块之间的连接。
The aim of this paper is to apply character properties of Frobenius group to a local block form of an group algebra. We start by establishing a block form of Brauer permutation Lemma by using block participation of conjugate classes of a group $G$. Then we can define a pair of Frobenius corresponding blocks between a group $G$ and its normal subgroup $N$. A near group condition is given to determine a pair of Frobenius corresponding blocks. With a pair of Frobenius corresponding blocks, we study its group structure. At last we prove connections between nilpotent properties and Frobenius corresponding blocks.