论文标题
模型Rubik的立方体:扭曲的分辨率,深度和宽度
Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets
论文作者
论文摘要
为了获得出色的深神经体系结构,在有效网络中精心设计了一系列技术。同时扩大分辨率,深度和宽度的巨型公式为我们提供了神经网络的魔方。这样我们就可以通过扭曲三个维度来找到具有高效率和出色性能的网络。本文旨在探讨以最小模型和计算成本获得深度神经网络的扭曲规则。与网络扩大不同,我们观察到分辨率和深度比微小网络更重要。因此,原始方法,即,在效率网络中的化合物缩放不再适合。为此,我们通过一系列源自有触发器约束的效率网络-B0衍生的较小模型来概括一个微小的公式,用于缩小神经体系结构。 Imagenet基准测试的实验结果表明,我们的TinyNet的性能要比使用反向的巨型公式的较小版本的有效网络的性能要好得多。例如,我们的TinyNet-E仅使用2400万插槽获得了59.9%的TOP-1准确性,比以前最佳MobilenetV3高约1.9%,计算成本相似。代码将在https://github.com/huawei-noah/ghostnet/tree/master/master/tinynet_pytorch和https://gitee.com/mindspore/mindspore/mindspore/mindspore/tree/master/model_zoearch/research/research/cv/tinynet。
To obtain excellent deep neural architectures, a series of techniques are carefully designed in EfficientNets. The giant formula for simultaneously enlarging the resolution, depth and width provides us a Rubik's cube for neural networks. So that we can find networks with high efficiency and excellent performance by twisting the three dimensions. This paper aims to explore the twisting rules for obtaining deep neural networks with minimum model sizes and computational costs. Different from the network enlarging, we observe that resolution and depth are more important than width for tiny networks. Therefore, the original method, i.e., the compound scaling in EfficientNet is no longer suitable. To this end, we summarize a tiny formula for downsizing neural architectures through a series of smaller models derived from the EfficientNet-B0 with the FLOPs constraint. Experimental results on the ImageNet benchmark illustrate that our TinyNet performs much better than the smaller version of EfficientNets using the inversed giant formula. For instance, our TinyNet-E achieves a 59.9% Top-1 accuracy with only 24M FLOPs, which is about 1.9% higher than that of the previous best MobileNetV3 with similar computational cost. Code will be available at https://github.com/huawei-noah/ghostnet/tree/master/tinynet_pytorch, and https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/tinynet.