论文标题
半监督文本注释的贝叶斯方法
Bayesian Methods for Semi-supervised Text Annotation
论文作者
论文摘要
人类注释是自然语言理解方法发展的重要信息来源。因为在生产力注释的压力下可以将不同的标签分配给给定文本,因此产生的注释的质量经常变化。尤其是这样,如果决策很困难,具有较高的认知负担,需要对更广泛的背景的认识或仔细考虑背景知识。为了减轻问题,我们提出了两种半监督方法来指导注释过程:贝叶斯深度学习模型和贝叶斯合奏方法。使用贝叶斯深度学习方法,我们可以发现不信任的注释,可能需要重新注释。最近提出的一种贝叶斯合奏方法有助于我们将注释者的标签与训练有素的模型相结合。根据从三个仇恨言语检测实验获得的结果,提出的贝叶斯方法可以改善BERT模型的注释和预测性能。
Human annotations are an important source of information in the development of natural language understanding approaches. As under the pressure of productivity annotators can assign different labels to a given text, the quality of produced annotations frequently varies. This is especially the case if decisions are difficult, with high cognitive load, requires awareness of broader context, or careful consideration of background knowledge. To alleviate the problem, we propose two semi-supervised methods to guide the annotation process: a Bayesian deep learning model and a Bayesian ensemble method. Using a Bayesian deep learning method, we can discover annotations that cannot be trusted and might require reannotation. A recently proposed Bayesian ensemble method helps us to combine the annotators' labels with predictions of trained models. According to the results obtained from three hate speech detection experiments, the proposed Bayesian methods can improve the annotations and prediction performance of BERT models.