论文标题
激光激光的弹性引导波揭示了纳米孔的复杂力学
Laser-Excited Elastic Guided Waves Reveal the Complex Mechanics of Nanoporous Silicon
论文作者
论文摘要
硅中的纳米质性导致该主流半导体的全新功能。但是,难以评估的力学已经显着限制了其在从纳米流体和生物传感器到药物输送,能量储存和光子学等领域的应用。在这里,我们介绍了一项研究,对在干燥和液体注入液晶的多孔硅中检测到的激光激发弹性引导波,无接触式和无损。这些实验表明,每平方厘米横截面的自组织形成1000亿平行纳米孔会导致垂直于孔轴的几乎各向同性弹性,并降低了80%的有效刚度,从而完全导致与立方体偏s的偏差显着偏差。我们对纳米多孔硅的晶圆尺度力学的彻底评估为在强大的片上设备中的预测应用提供了基础,以及最近在激光超声波中突破的证据,开辟了全新的边界,用于原地,非毁灭性的机械性特征,对干燥和液态官能造成的多孔材料。
Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. A difficult to assess mechanics has however significantly limited its application in fields ranging from nanofluidics and biosensorics to drug delivery, energy storage and photonics. Here, we present a study on laser-excited elastic guided waves detected contactless and non-destructively in dry and liquid-infused single-crystalline porous silicon. These experiments reveal that the self-organised formation of 100 billions of parallel nanopores per square centimetre cross section results in a nearly isotropic elasticity perpendicular to the pore axes and an 80% effective stiffness reduction, altogether leading to significant deviations from the cubic anisotropy observed in bulk silicon. Our thorough assessment of the wafer-scale mechanics of nanoporous silicon provides the base for predictive applications in robust on-chip devices and evidences that recent breakthroughs in laser ultrasonics open up entirely new frontiers for in-situ, non-destructive mechanical characterisation of dry and liquid-functionalised porous materials.