论文标题
CNN的CNN Profiler对热带气旋结构分析的极坐标图像
CNN Profiler on Polar Coordinate Images for Tropical Cyclone Structure Analysis
论文作者
论文摘要
卷积神经网络(CNN)在分析热带气旋(TC)中使用卫星图像在多个任务(例如TC强度估计)中取得了巨大成功。相比之下,TC结构通常由气象专家主观估计的一些参数描述,但仍然很难客观和常规地介绍。这项研究将CNN应用于卫星图像,以创建整个TC结构曲线,涵盖所有结构参数。通过利用气象领域知识来基于历史结构参数构建TC风轮廓,我们为新发布的基准数据集提供了有价值的标签,用于培训。有了这样的数据集,我们希望在数据科学家中吸引人们对这个关键问题的更多关注。同时,建立了一个基线,该基线是在极地坐标上运行的专门卷积模型。我们发现,根据TC的旋转和螺旋性,提取有关极地坐标而不是笛卡尔坐标的结构信息更为可行,并且在身体上是合理的。发布的基准数据集的实验结果验证了提出的模型的鲁棒性,并证明了将深度学习技术应用于这个鲜为人知但重要的主题的潜力。
Convolutional neural networks (CNN) have achieved great success in analyzing tropical cyclones (TC) with satellite images in several tasks, such as TC intensity estimation. In contrast, TC structure, which is conventionally described by a few parameters estimated subjectively by meteorology specialists, is still hard to be profiled objectively and routinely. This study applies CNN on satellite images to create the entire TC structure profiles, covering all the structural parameters. By utilizing the meteorological domain knowledge to construct TC wind profiles based on historical structure parameters, we provide valuable labels for training in our newly released benchmark dataset. With such a dataset, we hope to attract more attention to this crucial issue among data scientists. Meanwhile, a baseline is established with a specialized convolutional model operating on polar-coordinates. We discovered that it is more feasible and physically reasonable to extract structural information on polar-coordinates, instead of Cartesian coordinates, according to a TC's rotational and spiral natures. Experimental results on the released benchmark dataset verified the robustness of the proposed model and demonstrated the potential for applying deep learning techniques for this barely developed yet important topic.