论文标题

射线进行重量级化

Rays to renormalizations

论文作者

Levin, Genadi

论文摘要

令P为非线性多项式,k_p填充的P,f,p和k_f重新归一化的j和k_f填充的f。我们宽松地表明,有一个有限的函数λ从一组p-外部射线集中k_f中的限制点到f-外部射线到k_f的集合,使得r和λ(r)共享相同的限制集。特别是,如果可以从c \ setMinus k_f访问朱莉娅集J_F = \局部k_f的点,则可以通过p的外部射线访问(倒数很明显)。另一个有趣的推论是:k_p \ setMinus k_f的一个组件只能在一个(前)周期点上符合k_f。我们还研究了由光线的λon参数引起的对应关系。这些结果是对所有多项式的概括(涵盖了相关的Julia Set K_P的情况),levin-przytycki,Blokh-Childers-Levin-Levin-Oversteegen-Schleicger和Petersen-Zakeri在k_p nesected nesected n n econnecty时,k_p是一个周期性的组成部分,k_p是k_f ins k____p。

Let P be a non-linear polynomial, K_P the filled Julia set of P, f a renormalization of P and K_f the filled Julia set of f. We show, loosely speaking, that there is a finite-to-one function λfrom the set of P-external rays having limit points in K_f onto the set of f-external rays to K_f such that R and λ(R) share the same limit set. In particular, if a point of the Julia set J_f=\partial K_f of a renormalization is accessible from C\setminus K_f then it is accessible through an external ray of P (the inverse is obvious). Another interesting corollary is that: a component of K_P\setminus K_f can meet K_f only at a single (pre-)periodic point. We study also a correspondence induced by λon arguments of rays. These results are generalizations to all polynomials (covering notably the case of connected Julia set K_P) of some results of Levin-Przytycki, Blokh-Childers-Levin-Oversteegen-Schleicher and Petersen-Zakeri where the case is considered when K_P is disconnected and K_f is a periodic component of K_P.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源