论文标题

原始可变的离散外部演算离散化不可压缩的Navier-Stokes方程在表面简单网格上

A Primitive Variable Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations over Surface Simplicial Meshes

论文作者

Jagad, Pankaj, Abukhwejah, Abdullah, Mohamed, Mamdouh, Samtaney, Ravi

论文摘要

进行了保守的原始变量离散外观演算(DEC),对Navier-Stokes方程进行了离散化。 An existing DEC method (Mohamed, M. S., Hirani, A. N., Samtaney, R. (2016). Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. Journal of Computational Physics, 312, 175-191) is modified to this end, and is extended to include the energy-preserving time integration and the Coriolis force to enhance its applicability to investigate the late旋转表面上流的时间行为,即行星流的时间行为。仿真实验显示了结构化三角形网格的方案的二阶准确性,以及其他非结构化网格的一阶准确度。该方法表现出二阶动能相对误差收敛速率,而无粘性流的网格大小。旋转球上流动的测试案例表明该方法保留了固定状态,并在很长一段时间内保存了无污的不变性。

A conservative primitive variable discrete exterior calculus (DEC) discretization of the Navier-Stokes equations is performed. An existing DEC method (Mohamed, M. S., Hirani, A. N., Samtaney, R. (2016). Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. Journal of Computational Physics, 312, 175-191) is modified to this end, and is extended to include the energy-preserving time integration and the Coriolis force to enhance its applicability to investigate the late time behavior of flows on rotating surfaces, i.e., that of the planetary flows. The simulation experiments show second order accuracy of the scheme for the structured-triangular meshes, and first order accuracy for the otherwise unstructured meshes. The method exhibits second order kinetic energy relative error convergence rate with mesh size for inviscid flows. The test case of flow on a rotating sphere demonstrates that the method preserves the stationary state, and conserves the inviscid invariants over an extended period of time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源