论文标题
具有随机强迫的不可压缩欧拉方程的能量平衡
Energy-balance for the incompressible Euler equations with stochastic forcing
论文作者
论文摘要
我们为随机强迫不可压缩的Euler方程的弱解决方案建立了能量平衡,享受Hölder规律性$ C^α$,$α> 1/3 $。它被称为确定性不可压缩欧拉方程的Onsager猜想,它描述了具有Hölder正常性$ C^α$,$α> 1/3 $的弱解决方案的能源保护。此外,我们获得了由圆柱维纳过程驱动的不均匀不可压缩的Euler系统的能量平衡。
We establish energy-balance for weak solutions of the stochastically forced incompressible Euler equations, enjoying Hölder regularity $C^α$, $α>1/3$. It is well known as the Onsager's conjecture for the deterministic incompressible Euler equations, which describes the energy conservation of weak solutions having Hölder regularity $C^α$, $α>1/3$. Additionally, we obtain energy-balance for the inhomogeneous incompressible Euler system driven by a cylindrical Wiener process.