论文标题

咖啡馆:可解释建议的粗到精细的神经符号推理

CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

论文作者

Xian, Yikun, Fu, Zuohui, Zhao, Handong, Ge, Yingqiang, Chen, Xu, Huang, Qiaoying, Geng, Shijie, Qin, Zhou, de Melo, Gerard, Muthukrishnan, S., Zhang, Yongfeng

论文摘要

最近的研究探讨了将知识图(KG)纳入电子商务推荐系统中的,不仅是为了获得更好的建议性能,而且更重要的是为了产生为什么做出特定决策的解释。这可以通过明确的kg推理来实现,其中模型是从用户节点开始的,依次确定下一步,并朝着用户潜在兴趣的项目节点走去。但是,由于巨大的搜索空间,未知的目的地和kg上的稀疏信号,因此这是具有挑战性的,因此需要提供信息和有效的指导才能达到令人满意的建议质量。为此,我们提出了一种粗到精细的神经符号推理方法(CAFE)。它首先将用户配置文件作为用户行为的粗略草图生成,后来指导找到路径的过程,以获取推理路径的推理路径,以作为细粒度的预测。用户配置文件可以从历史记录中捕获突出的用户行为,并提供有价值的信号,以了解哪种路径模式更有可能导致用户感兴趣的潜在项目。为了更好地利用用户概况,还开发了一种改进的路径调查算法,称为配置文件引导的路径推理(PPR),该算法利用神经符号推理模块的库存有效,有效地在大型kg上找到一批路径。我们对四个现实世界的基准进行了广泛的实验,并观察到与最新方法相比,建议性能的巨大增长。

Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user. However, this is challenging due to the huge search space, unknown destination, and sparse signals over the KG, so informative and effective guidance is needed to achieve a satisfactory recommendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which subsequently guide a path-finding process to derive reasoning paths for recommendations as fine-grained predictions. User profiles can capture prominent user behaviors from the history, and provide valuable signals about which kinds of path patterns are more likely to lead to potential items of interest for the user. To better exploit the user profiles, an improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also developed, which leverages an inventory of neural symbolic reasoning modules to effectively and efficiently find a batch of paths over a large-scale KG. We extensively experiment on four real-world benchmarks and observe substantial gains in the recommendation performance compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源