论文标题
Q-Metric的新概括中的圆形测量学
Circular geodesics in a New Generalization of q-metric
论文作者
论文摘要
本文引入了用四极力矩($ \ rm q $ metric)对静态解的替代概括,该量子在以多极矩为特征的外部磁场的情况下描述了一个变形的紧凑对象。此外,我们还检查了四极杆对四极杆的影响对圆形测量学的影响以及这两个四倍体的相互作用对赤道平面中最内向稳定的圆形轨道(ISCO)的相互作用。
This paper introduces an alternative generalization of the static solution with quadrupole moment, the $\rm q$-metric, that describes a deformed compact object in the presence of the external fields characterized by multipole moments. In addition, we also examine the impact of the external fields up to quadrupole on the circular geodesics and the interplay of these two quadrupoles on the place of the innermost stable circular orbit (ISCO) in the equatorial plane.