论文标题
测量多组分散射矩阵:单位性和对称性
Surveying the Multicomponent Scattering Matrix: Unitarity and Symmetries
论文作者
论文摘要
Spim-Charge载体的多组分 - 元素通量,其成分与\ emph {a a imph {a a nonzero nonzero in omplududes一起传播混合和同步,并不遵守散射矩阵的标准单位性条件,以进行任意基集。在这种情况下,我们得出了一种健壮的理论程序,这是单位性保存的量子传输问题的基础,并且以\ emph {结构化的单位性条件}命名。我们的方法涉及$(n \ times n)$交互组件(对于$ n \ geq 2 $),在信封功能近似(EFA)内,但是($ n = 1 $)散射矩阵的标准统一属性已恢复。如果\ emph {eigen} - 函数在配置和自旋空间中均正常化,则不需要固定的散射系数和/或对输出散射系数的任意条件。我们希望目前的模型是可行的,对于Hermitian Hamiltonians在EFA中描述的不同种类的多体 - 多种成分物理系统,如果有的话,则具有很小的转换。我们预言了状态矢量传输矩阵的相互作用,以及其条件数量的较大值,作为一种新颖的互补工具,可在散射实验中更准确地定义隧道通道的阈值。
Multicomponent-multiband fluxes of spim-charge carriers, whose components propagate mixed and synchronously, with \emph{a priori} nonzero incoming amplitudes, do not obey the standard unitarity condition on the scattering matrix for an arbitrary basis set. For such cases, we have derived a robust theoretical procedure, which is fundamental in quantum-transport problems for unitarity preservation and we have named after \emph{structured unitarity condition}. Our approach deals with $(N \times N)$ interacting components (for $N \geq 2$), within the envelope function approximation (EFA), and yet the standard unitary properties of the ($N = 1$) scattering matrix are recovered. Rather arbitrary conditions to the basis-set and/or to the output scattering coefficients, are not longer required, if the \emph{eigen}-functions are orthonormalized in both the configuration and the spinorial spaces. We expect the present model to be workable, for different kind of multiband-multicomponent physical systems described by Hermitian Hamiltonians within the EFA, with small transformations if any. We foretell the interplay for the state-vector transfer matrix, together with the large values of its condition number, as a novel complementary tools for a more accurate definition of the threshold for tunnelling channels in a scattering experiment.