论文标题

可变密度两相流的相位场方法的压力校正和限制性离散化

A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows

论文作者

Liu, Chen, Ray, Deep, Thiele, Christopher, Lin, Lu, Riviere, Beatrice

论文摘要

在本文中,我们提出了一种有效的数值算法,用于求解时间依赖性的cahn-hilliard-navier- stokes方程,该方程模拟了两个具有不同密度的阶段的流动。投影方法中的压力校正步骤包括一个带有修改右侧的泊松问题。空间离散化基于带有分段线性或分段二次多项式的不连续的Galerkin方法。通量和斜率限制技术成功地消除了批量转移,过冲和下调的顺序参数,这被证明是有限的。几个数值结果表明,所提出的数值算法对于在多孔结构和数字岩石中建模两组不存在的流动是有效且可靠的。

In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn--Hilliard--Navier--Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consists of a Poisson problem with a modified right-hand side. Spatial discretization is based on discontinuous Galerkin methods with piecewise linear or piecewise quadratic polynomials. Flux and slope limiting techniques successfully eliminate the bulk shift, overshoot and undershoot in the order parameter, which is shown to be bound-preserving. Several numerical results demonstrate that the proposed numerical algorithm is effective and robust for modeling two-component immiscible flows in porous structures and digital rocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源