论文标题

对应矩阵被低估

Correspondence Matrices are Underrated

论文作者

Zodage, Tejas, Chakwate, Rahul, Sarode, Vinit, Srivatsan, Rangaprasad Arun, Choset, Howie

论文摘要

Point-Cloud注册(PCR)是各种应用中的重要任务,例如机器人操纵,增强和虚拟现实,SLAM等。PCR是一个优化问题,涉及两种不同类型的相互依存变量最小化:转换参数:转换参数和点对点对应关系。深度学习的最新发展已经为PCR提供了快速的计算方法。这些网络中优化的损耗函数基于转换参数中的误差。我们假设这些方法使用对应误差计算出损失函数,而不仅仅是在变换参数中使用误差,它们的性能将更好。我们将对应误差定义为基于不正确匹配的点对的度量。我们提供了为什么这种情况的基本解释,并通过修改现有方法以使用基于对应的损失而不是基于转换的损失来检验我们的假设。这些实验表明,与原始网络相比,修改后的网络会更快地收敛,甚至在更大的未对准时更准确地注册。

Point-cloud registration (PCR) is an important task in various applications such as robotic manipulation, augmented and virtual reality, SLAM, etc. PCR is an optimization problem involving minimization over two different types of interdependent variables: transformation parameters and point-to-point correspondences. Recent developments in deep-learning have produced computationally fast approaches for PCR. The loss functions that are optimized in these networks are based on the error in the transformation parameters. We hypothesize that these methods would perform significantly better if they calculated their loss function using correspondence error instead of only using error in transformation parameters. We define correspondence error as a metric based on incorrectly matched point pairs. We provide a fundamental explanation for why this is the case and test our hypothesis by modifying existing methods to use correspondence-based loss instead of transformation-based loss. These experiments show that the modified networks converge faster and register more accurately even at larger misalignment when compared to the original networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源