论文标题

对角组和组的弧形

Diagonal groups and arcs over groups

论文作者

Bailey, R. A., Cameron, Peter J., Kinyon, Michael, Praeger, Cheryl E.

论文摘要

在三位现任作者和Csaba Schneider的早期论文中,显示出,对于$ m \ ge2 $,一组$ m+1 $的分区,$ m $的分区,任何$ m $,其中任何$ m $是最小的非平凡元素基本组$ g $。 在本文中,我们调查如果我们拥有$ m+r $ $ $ $ $ \ geq 2 $,其中任何$ m $的分区是笛卡尔晶格的最小元素。如果$ m = 2 $,则只是一组相互正交的拉丁正方形。我们考虑所有这些正方形都是同位素到小组的同位素表的情况,并举例说明这些组并非一定都是同构。对于$ m> 2 $,事情受到更大的限制。任何$ m+1 $的分区都会产生一个联接 - 隔离,以$ g $的对角线群体承认对角线。尽管我们无法证明这一点,但可能都是同构的。在一个额外的假设下,我们表明$ g $必须是阿贝利安,并且必须具有三个无固定点的自动形态,它们的产品是身份。在这个假设下,这种结构给出了正交阵列,在某些情况下是相反的。 如果该组是Prime Order $ p $的循环,则该结构完全对应于$(M-1)$(M-1)$ M+r $的弧线 - 具有$ p $元素的$(M-1)尺寸投射空间,因此所有有关ARC的已知结果均适用。更一般而言,在有限订单$ Q $的有限字段上,$ g $是$ g $的示例,是基础Abelian订单$ Q $。这些示例可以使用$ p $ adadic技术将非优质的阿贝尔群体提升。

In an earlier paper by three of the present authors and Csaba Schneider, it was shown that, for $m\ge2$, a set of $m+1$ partitions of a set $Ω$, any $m$ of which are the minimal non-trivial elements of a Cartesian lattice, either form a Latin square (if $m=2$), or generate a join-semilattice of dimension $m$ associated with a diagonal group over a base group $G$. In this paper we investigate what happens if we have $m+r$ partitions with $r\geq 2$, any $m$ of which are minimal elements of a Cartesian lattice. If $m=2$, this is just a set of mutually orthogonal Latin squares. We consider the case where all these squares are isotopic to Cayley tables of groups, and give an example to show the groups need not be all isomorphic. For $m>2$, things are more restricted. Any $m+1$ of the partitions generate a join-semilattice admitting a diagonal group over a group $G$. It may be that the groups are all isomorphic, though we cannot prove this. Under an extra hypothesis, we show that $G$ must be abelian and must have three fixed-point-free automorphisms whose product is the identity. Under this hypothesis, such a structure gives an orthogonal array, and conversely in some cases. If the group is cyclic of prime order $p$, then the structure corresponds exactly to an arc of cardinality $m+r$ in the $(m-1)$-dimensional projective space over the field with $p$ elements, so all known results about arcs are applicable. More generally, arcs over a finite field of order $q$ give examples where $G$ is the elementary abelian group of order $q$. These examples can be lifted to non-elementary abelian groups using $p$-adic techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源