论文标题

BARTNIK数据的NNSC-Cobordism不存在

Nonexistence of NNSC-cobordism of Bartnik data

论文作者

Bo, Leyang, Shi, Yuguang

论文摘要

在本文中,我们考虑了bartnik数据$(σ_1^{n-1},γ_1,H_1)$和$(σ_2^{n-1},γ_2,H_2)$的非负标量曲率(NNSC)的问题。我们证明,给定两个指标$γ_1$和$ s^{n-1} $上的$γ_2$($ 3 \ le n \ le 7 $),$ h_1 $固定,然后$(s^{n-1},γ_1,γ_1,h__1,h__1),h__1)$ and $(s^{n-1},n no n n n n n n n n n n n sc,cob cob cob cob cob cob cob cob ersist cob ersist, $ h_2 $足够大(定理\ ref {highdimnoncob0})。此外,我们表明,对于$ n = 3 $,一个弱的条件是,总平均曲率$ \ int_ {s^2}h_2dμ__{γ_2} $足够大,足够大的规则排除了NNSC COBORDISM(theorem \ ref Ref {2-D0});如果我们需要$γ_2$的高斯曲率为正,我们通过使用鹰质量和棕色York质量(定理\ ref {Cobordism20})获得了不存在微不足道的NNSC-Cobordism的标准。 For the general topology case, we prove that $(Σ_1^{n-1}, γ_1, 0)$ and $(Σ_2^{n-1}, γ_2, H_2)$ admit no NNSC cobordism provided the prescribed mean curvature $H_2$ is large enough(Theorem \ref{highdimnoncob10}).

In this paper, we consider the problem of nonnegative scalar curvature (NNSC) cobordism of Bartnik data $(Σ_1^{n-1}, γ_1, H_1)$ and $(Σ_2^{n-1}, γ_2, H_2)$. We prove that given two metrics $γ_1$ and $γ_2$ on $S^{n-1}$ ($3\le n\le 7$) with $H_1$ fixed, then $(S^{n-1}, γ_1, H_1)$ and $(S^{n-1}, γ_2, H_2)$ admit no NNSC cobordism provided the prescribed mean curvature $H_2$ is large enough(Theorem \ref{highdimnoncob0}). Moreover, we show that for $n=3$, a much weaker condition that the total mean curvature $\int_{S^2}H_2dμ_{γ_2}$ is large enough rules out NNSC cobordisms(Theorem \ref{2-d0}); if we require the Gaussian curvature of $γ_2$ to be positive, we get a criterion for non existence of trivial NNSC-cobordism by using Hawking mass and Brown-York mass(Theorem \ref{cobordism20}). For the general topology case, we prove that $(Σ_1^{n-1}, γ_1, 0)$ and $(Σ_2^{n-1}, γ_2, H_2)$ admit no NNSC cobordism provided the prescribed mean curvature $H_2$ is large enough(Theorem \ref{highdimnoncob10}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源