论文标题
域间深处的高斯过程
Inter-domain Deep Gaussian Processes
论文作者
论文摘要
在GP模型中执行近似推断时,域间高斯过程(GPS)允许高灵活性和低计算成本。它们特别适合对显示全球结构的数据进行建模,但仅限于固定协方差函数,因此无法有效地对非平稳数据进行建模。我们提出了域间深高斯过程,这是结合了域间和深高斯过程(DGP)优势的层间浅GP的扩展,并演示了如何利用现有的近似推理方法来执行简单且可扩展的近似推理,该方法使用DGPS中的跨核心特征进行了近似推理。我们评估方法在一系列回归任务上的性能,并证明它在挑战大规模的真实世界数据集方面优于域间浅GP和常规DGP,既表现出全球结构又表现出高度的非平稳性。
Inter-domain Gaussian processes (GPs) allow for high flexibility and low computational cost when performing approximate inference in GP models. They are particularly suitable for modeling data exhibiting global structure but are limited to stationary covariance functions and thus fail to model non-stationary data effectively. We propose Inter-domain Deep Gaussian Processes, an extension of inter-domain shallow GPs that combines the advantages of inter-domain and deep Gaussian processes (DGPs), and demonstrate how to leverage existing approximate inference methods to perform simple and scalable approximate inference using inter-domain features in DGPs. We assess the performance of our method on a range of regression tasks and demonstrate that it outperforms inter-domain shallow GPs and conventional DGPs on challenging large-scale real-world datasets exhibiting both global structure as well as a high-degree of non-stationarity.