论文标题
局部旋转的对称空间和辐射星的匹配条件
Matching conditions in Locally Rotationally Symmetric spacetimes and radiating stars
论文作者
论文摘要
我们使用半旋转1+1+2的协变形式主义重塑了众所周知的以色列 - 戴尔莫伊斯匹配条件,用于局部旋转对称(LRS-II)空间。这表明了两个不同的空间的几何量如何在遗传对称性的一般匹配表面上相关,这两个不同的空间是如何相关的,这可以是时间线或空间。该方法纯粹是几何的,取决于在匹配的超表面上匹配二维片的高斯曲率。这还提供了每个时空上热力学量的限制,以便可以在整个表面上平稳匹配。例如,我们恢复了与一般相对性中Vaidya外观相匹配的辐射恒星的Santos边界条件和模型。
We recast the well known Israel-Darmois matching conditions for Locally Rotationally Symmetric (LRS-II) spacetimes using the semitetrad 1+1+2 covariant formalism. This demonstrates how the geometrical quantities including the volume expansion, spacetime shear, acceleration and Weyl curvature of two different spacetimes are related at a general matching surface inheriting the symmetry, which can be timelike or spacelike. The approach is purely geometrical and depends on matching the Gaussian curvature of 2-dimensional sheets at the matching hypersurface. This also provides the constraints on the thermodynamic quantities on each spacetime so that they can be matched smoothly across the surface. As an example we regain the Santos boundary conditions and model of a radiating star matched to a Vaidya exterior in general relativity.