论文标题
在语义时代操纵的预训练GAN的潜在空间上学习深入的强化学习政策
Learning a Deep Reinforcement Learning Policy Over the Latent Space of a Pre-trained GAN for Semantic Age Manipulation
论文作者
论文摘要
学习潜在空间的分离表示已成为计算机视觉研究中最根本的问题之一。最近,许多生成对抗网络(GAN)在产生高保真图像方面表现出了令人鼓舞的结果。但是,了解预训练模型潜在空间的语义布局的研究仍然有限。有几项作品火车有条件的剂量生成具有所需语义属性的面孔。不幸的是,在这些尝试中,生成的输出通常不像无条件的最新模型那样真实。此外,它们还需要大量的计算资源和特定数据集来生成高保真图像。在我们的工作中,我们在预先训练的GAN模型的潜在空间上制定了马尔可夫决策过程(MDP),以学习在定义的身份范围下沿特定属性的语义操纵的条件策略。此外,我们使用潜在空间上的局部线性近似定义了语义时代的操纵方案。结果表明,我们学到的政策样本示例具有所需年龄改变的高保真图像,同时保留了该人的身份。
Learning a disentangled representation of the latent space has become one of the most fundamental problems studied in computer vision. Recently, many Generative Adversarial Networks (GANs) have shown promising results in generating high fidelity images. However, studies to understand the semantic layout of the latent space of pre-trained models are still limited. Several works train conditional GANs to generate faces with required semantic attributes. Unfortunately, in these attempts, the generated output is often not as photo-realistic as the unconditional state-of-the-art models. Besides, they also require large computational resources and specific datasets to generate high fidelity images. In our work, we have formulated a Markov Decision Process (MDP) over the latent space of a pre-trained GAN model to learn a conditional policy for semantic manipulation along specific attributes under defined identity bounds. Further, we have defined a semantic age manipulation scheme using a locally linear approximation over the latent space. Results show that our learned policy samples high fidelity images with required age alterations, while preserving the identity of the person.