论文标题
通过深卷积神经网络预测局部原始恒星形成
Predicting Localized Primordial Star Formation with Deep Convolutional Neural Networks
论文作者
论文摘要
我们研究了将3D深卷积神经网络应用于原始星系中原始恒星的形成和反馈效应的快速替代模型中的研究。在这里,我们提出了替代模型,以预测局部原始恒星的形成。反馈模型将在随后的论文中介绍。星形形成预测模型由两个子模型组成:第一个是一个3D体积分类器,该分类器预测哪个(10个Comoving KPC)$^3 $卷将托管星星形成,然后是基于3D启动的U-NET Voxel分段模型,可以预测哪些体体将形成原始星。我们发现,合并的模型可以预测具有高技能的原始恒星形成量,$ f_1> 0.995 $,而真实的技能得分$> 0.994 $。恒星编队本地化为$ \ lyssim5^3 $ 〜Voxels($ \ sim1.6 $ 〜comoving kpc $^3 $),$ f_1> 0.399 $和真实的技能得分$> 0.857 $。该模型应用于具有低空间分辨率的模拟,可预测在相同位置和红移的恒星形成区域与已解决的全物理模拟中的地点相似,这些模拟明确模拟了原始星星的形成和反馈。当应用于质量分辨率较低的模拟时,我们发现该模型可以预测由于质量较低的质量分辨率导致的延迟结构形成,因此在后来的红移处预测恒星形成区域。我们的模型可以预测没有光晕发现的原始恒星形成,因此在无法解析原始恒星形成光环的空间不足的模拟中将是有用的。据我们所知,这是第一个可以预测原始恒星形成高度分辨宇宙学模拟的模型。
We investigate applying 3D deep convolutional neural networks as fast surrogate models of the formation and feedback effects of primordial stars in hydrodynamic cosmological simulations of the first galaxies. Here, we present the surrogate model to predict localized primordial star formation; the feedback model will be presented in a subsequent paper. The star formation prediction model consists of two sub-models: the first is a 3D volume classifier that predicts which (10 comoving kpc)$^3$ volumes will host star formation, followed by a 3D Inception-based U-net voxel segmentation model that predicts which voxels will form primordial stars. We find that the combined model predicts primordial star forming volumes with high skill, with $F_1 >0.995$ and true skill score $>0.994$. The star formation is localized within the volume to $\lesssim5^3$~voxels ($\sim1.6$~comoving kpc$^3$) with $F_1>0.399$ and true skill score $>0.857$. Applied to simulations with low spatial resolution, the model predicts star forming regions in the same locations and at similar redshifts as sites in resolved full-physics simulations that explicitly model primordial star formation and feedback. When applied to simulations with lower mass resolution, we find that the model predicts star forming regions at later redshift due to delayed structure formation resulting from lower mass resolution. Our model predicts primordial star formation without halo finding, so will be useful in spatially under-resolved simulations that cannot resolve primordial star forming halos. To our knowledge, this is the first model that can predict primordial star forming regions that match highly-resolved cosmological simulations.