论文标题

由于空腔介导的相关隧道而引起的自组织拓扑绝缘子

Self-organized topological insulator due to cavity-mediated correlated tunneling

论文作者

Chanda, Titas, Kraus, Rebecca, Morigi, Giovanna, Zakrzewski, Jakub

论文摘要

拓扑材料具有量子技术的潜在应用。非相互作用的拓扑材料(例如拓扑绝缘子和超导体)通过基本对称类别进行分类。相反,仅部分了解相互作用如何影响拓扑特性。在这里,我们讨论了一个模型,其中拓扑是从单粒子动力学和全局相互作用之间的量子干扰中出现的。该系统由软核玻色子组成,这些玻色子通过一维晶格中的全局相关跳跃相互作用。量子干扰的发作导致晶格翻译对称性的自发断裂,相应的阶段类似于著名的Su-Schriefer-Heeger模型的非平凡状态。像费米克·皮埃尔斯(Fermionic Peierls)的不稳定性一样,新兴量子相是拓扑绝缘子,在半填充物中发现。起源于量子干扰,该拓扑阶段在“精确”密度 - 矩阵重新归一化组计算中发现,并且在平均场方法中完全不存在。我们认为这些动力可以在现有的实验平台中实现,例如腔量子电动力学设置,在谐振器发出的光中可以揭示拓扑特征。

Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源