论文标题

功能动态因子模型的非参数估计

Nonparametric Estimation of Functional Dynamic Factor Model

论文作者

Martínez-Hernández, Israel, Gonzalo, Jesús, González-Farías, Graciela

论文摘要

可以认为数据是许多现象上无限二维空间上定义的连续函数。但是,无限维数据可能是由少数潜在变量驱动的。因此,因子模型与功能数据有关。在本文中,我们研究了时间相关功能数据的功能因子模型。我们建议在固定和非组织过程下提出非参数估计器。我们获得考虑时间依赖性属性的估计器。具体而言,我们使用不同滞后协方差中包含的信息。我们表明拟议的估计器是一致的。通过蒙特卡洛模拟,我们发现我们的方法学优于基于功能主成分的估计器。我们还将方法应用于每月的收益曲线。通常,适当的时间依赖性信息可以改善潜在因素的估计。

Data can be assumed to be continuous functions defined on an infinite-dimensional space for many phenomena. However, the infinite-dimensional data might be driven by a small number of latent variables. Hence, factor models are relevant for functional data. In this paper, we study functional factor models for time-dependent functional data. We propose nonparametric estimators under stationary and nonstationary processes. We obtain estimators that consider the time-dependence property. Specifically, we use the information contained in the covariances at different lags. We show that the proposed estimators are consistent. Through Monte Carlo simulations, we find that our methodology outperforms estimators based on functional principal components. We also apply our methodology to monthly yield curves. In general, the suitable integration of time-dependent information improves the estimation of the latent factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源