论文标题
通过将人群交通数据与自动交通计数器(ATC)相结合(伦敦的案例研究),通过将人群交通数据与自动交通数据相结合来延迟曲线
Context-specific volume-delay curves by combining crowd-sourced traffic data with Automated Traffic Counters (ATC): a case study for London
论文作者
论文摘要
世界各地的交通拥堵已达到慢性水平。尽管有许多技术破坏,这是交通建模中最基本和广泛使用的功能之一,自1960年代开发以来,体积延迟功能几乎没有变化的方式。传统上,宏观方法已被用来将交通量与车辆旅行时间联系起来。这些功能的一般性质使它们易于使用,并提供了广泛的适用性。但是,他们缺乏考虑单个道路特征的能力(即几何形状,交通家具的存在,道路质量和周围环境)。这项研究研究了使用两个不同的数据源重建模型的可行性,即Google Maps的方向的流量速度应用程序编程接口(API)和来自自动流量计数器(ATC)的流量量数据。 Google的交通速度数据是从道路使用者的智能手机全球定位系统(GPS)中种出的,能够反映道路的实时,特定于上下文的交通状况。另一方面,ATC可以通过同样精细的时间分辨率(每小时或更少)收集车辆体积数据。通过将它们与伦敦的不同道路类型相结合,可以生成新的特定于上下文特定的音量延迟功能。此方法显示出具有强大功能的所选位置的希望。在其他地方,它强调了需要更好地了解其他影响因素,例如在道路停车场或天气活动中的存在。
Traffic congestion across the world has reached chronic levels. Despite many technological disruptions, one of the most fundamental and widely used functions within traffic modelling, the volume delay function, has seen little in the way of change since it was developed in the 1960's. Traditionally macroscopic methods have been employed to relate traffic volume to vehicular journey time. The general nature of these functions enables their ease of use and gives widespread applicability. However, they lack the ability to consider individual road characteristics (i.e. geometry, presence of traffic furniture, road quality and surrounding environment). This research investigates the feasibility to reconstruct the model using two different data sources, namely the traffic speed from Google Maps' Directions Application Programming Interface (API) and traffic volume data from automated traffic counters (ATC). Google's traffic speed data are crowd-sourced from the smartphone Global Positioning System (GPS) of road users, able to reflect real-time, context-specific traffic condition of a road. On the other hand, the ATCs enable the harvesting of the vehicle volume data over equally fine temporal resolutions (hourly or less). By combining them for different road types in London, new context-specific volume-delay functions can be generated. This method shows promise in selected locations with the generation of robust functions. In other locations it highlights the need to better understand other influencing factors, such as the presence of on road parking or weather events.