论文标题
一类与Engel系列有关的连续功能,具有复杂的本地性能
One class of continuous functions related to Engel series and having complicated local properties
论文作者
论文摘要
我们在$ [0,1] $函数上构建和研究连续的类别,其中包括连续的特殊性集(单数,无处单调和非差异性功能)。该类别的代表是由恩格尔表示参数和一些收敛的真实序列定义的函数。我们研究此功能的局部和全局特性:结构,极端,差异,积分和分形特性。
We construct and study the class of continuous on $[0, 1]$ functions with continuum set of peculiarities (singular, nowhere monotonic, and non-differentiable functions are among them). The representative of this class is the function defined by the Engel representation of argument and some convergent real series. We study local and global properties of this function: structural, extremal, differential, integral, and fractal properties.