论文标题
可变背景中DHYM连接的示例
Examples of dHYM connections in a variable background
论文作者
论文摘要
我们使用动量构造明确研究了统治表面上变形的Hermitian Yang-Mills(DHYM)连接。作为一个主要应用程序,我们提供了许多新的DHYM连接示例,该连接耦合到可变背景Kähler指标。这些是矩映射局部偏微分方程的解决方案,该方程是由扩展量规组的哈密顿作用给出的,将dhym方程与背景的标态曲率耦合。这些耦合方程式的大半径极限是Álvarez-Cónsul,Garcia-Fernandez和García-Prada的Kähler-Yang-Mills系统,在此限制下,我们的解决方案平稳地收敛于Keller和Tønnesen-Friedman构建的解决方案。我们还讨论了示例的其他方面,包括锥形奇异性,实现为B型玻璃,小半径极限和复杂的Kähler类的规范代表。
We study deformed Hermitian Yang-Mills (dHYM) connections on ruled surfaces explicitly, using the momentum construction. As a main application we provide many new examples of dHYM connections coupled to a variable background Kähler metric. These are solutions of the moment map partial differential equations given by the Hamiltonian action of the extended gauge group, coupling the dHYM equation to the scalar curvature of the background. The large radius limit of these coupled equations is the Kähler-Yang-Mills system of Álvarez-Cónsul, Garcia-Fernandez and García-Prada, and in this limit our solutions converge smoothly to those constructed by Keller and Tønnesen-Friedman. We also discuss other aspects of our examples including conical singularities, realisation as B-branes, the small radius limit and canonical representatives of complexified Kähler classes.