论文标题
$ \ mathbb {z} _2^2 $ - $ osp的扩展(1 | 2)$的最低权重模块的最低权重模块的分类
A classification of lowest weight irreducible modules over $\mathbb{Z}_2^2$-graded extension of $osp(1|2)$
论文作者
论文摘要
我们调查了$ \ mathbb {z} _2^2 $ osp(1 | 2)$的分机的表示,这是频谱生成最近引入的代数的$ \ mathbb {z} _2 _2^2^2 $ graded-graded-graded-graded-graded-graded版本的SuperConform Mechanics的版本。主要结果是对$ \ Mathbb {z} _2^2 $ - osp(1 | 2)$的$ \ mathbb {z} _2^2 $ graded Extension的最低权重模块的分类。这是通过引入Verma模块及其由单数向量产生的最大不变的子模块来完成的。还介绍了所有单数矢量的明确公式。
We investigate representations of the $\mathbb{Z}_2^2$-graded extension of $osp(1|2)$ which is the spectrum generating algebra of the recently introduced $\mathbb{Z}_2^2$-graded version of superconformal mechanics. The main result is a classification of irreducible lowest weight modules of the $\mathbb{Z}_2^2$-graded extension of $osp(1|2)$. This is done via introduction of Verma modules and its maximal invariant submodule generated by singular vectors. Explicit formula of all singular vectors are also presented.