论文标题
介入域的适应性
Interventional Domain Adaptation
论文作者
论文摘要
域的适应性(DA)旨在转移从源域中学到的歧视性特征到目标域。大多数DA方法都致力于通过域 - 不变性学习增强功能可传递性。但是,源学习的可区分性本身可能是量身定制的,以通过虚假相关性(\ emph {i.e。})偏向和不安全转移,特定于源特征的一部分与类别标签相关。我们发现标准域 - 不变性学习遭受了此类相关性,并且错误地转移了源特异性。为了解决这个问题,我们使用未标记的目标数据来干预特征可辨别性,以指导其摆脱特定于域的部分并可以安全地转移。具体而言,我们生成了反事实特征,通过新颖的特征干预策略将域特异性与域共同部分区分开。为了防止域特异性的居住,该特征可区分性经过训练,是反事实特征的域特异性突变的不变性。在典型的\ emph {一对一}进行无监督的域适应和挑战性的域 - 不合骨的适应任务时,我们的方法对最先进的方法的一致性提高了良好的歧视性歧视性特征,并且可以很好地转移到新颖的领域。
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability itself might be tailored to be biased and unsafely transferable by spurious correlations, \emph{i.e.}, part of source-specific features are correlated with category labels. We find that standard domain-invariance learning suffers from such correlations and incorrectly transfers the source-specifics. To address this issue, we intervene in the learning of feature discriminability using unlabeled target data to guide it to get rid of the domain-specific part and be safely transferable. Concretely, we generate counterfactual features that distinguish the domain-specifics from domain-sharable part through a novel feature intervention strategy. To prevent the residence of domain-specifics, the feature discriminability is trained to be invariant to the mutations in the domain-specifics of counterfactual features. Experimenting on typical \emph{one-to-one} unsupervised domain adaptation and challenging domain-agnostic adaptation tasks, the consistent performance improvements of our method over state-of-the-art approaches validate that the learned discriminative features are more safely transferable and generalize well to novel domains.