论文标题
卷积神经网络对组织病理学癌症分类的维度影响分析
Analysis of Dimensional Influence of Convolutional Neural Networks for Histopathological Cancer Classification
论文作者
论文摘要
可以根据手头的任务设计卷积神经网络的复杂性不同。本文分析了CNN体系结构对其性能对组织病理学癌症分类任务的影响的影响。该研究从具有(3 x 3)卷积过滤器的基线10层CNN模型开始。此后,基线体系结构以多个维度缩放,包括宽度,深度,分辨率和所有这些组合。宽度尺度涉及每CNN层的神经元数量更多,而深度缩放涉及加深分层分层结构。分辨率缩放是通过增加输入图像的尺寸来执行的,并且复合缩放范围涉及宽度,深度和分辨率缩放的混合组合。结果表明,组织病理学癌症本质上非常复杂,因此需要高分辨率的图像,以呈现到卷积,最大化,辍学和批次归一化层的大量层次结构,以提取所有复杂性并执行完美的分类。由于化合物缩放基线模型可确保所有三个维度:宽度,深度和分辨率均缩放,因此可以通过复合缩放来获得最佳性能。这项研究表明,通过基线模型的复合缩放来实现CNN模型的更好性能,以完成组织病理学癌症分类的任务。
Convolutional Neural Networks can be designed with different levels of complexity depending upon the task at hand. This paper analyzes the effect of dimensional changes to the CNN architecture on its performance on the task of Histopathological Cancer Classification. The research starts with a baseline 10-layer CNN model with (3 X 3) convolution filters. Thereafter, the baseline architecture is scaled in multiple dimensions including width, depth, resolution and a combination of all of these. Width scaling involves inculcating greater number of neurons per CNN layer, whereas depth scaling involves deepening the hierarchical layered structure. Resolution scaling is performed by increasing the dimensions of the input image, and compound scaling involves a hybrid combination of width, depth and resolution scaling. The results indicate that histopathological cancer scans are very complex in nature and hence require high resolution images fed to a large hierarchy of Convolution, MaxPooling, Dropout and Batch Normalization layers to extract all the intricacies and perform perfect classification. Since compound scaling the baseline model ensures that all the three dimensions: width, depth and resolution are scaled, the best performance is obtained with compound scaling. This research shows that better performance of CNN models is achieved by compound scaling of the baseline model for the task of Histopathological Cancer Classification.