论文标题
Coadnet:用于共同降低对象检测的协作聚合和分布网络
CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-Salient Object Detection
论文作者
论文摘要
共同定位对象检测(COSOD)旨在发现在包含两个或更多相关图像的给定查询组中反复出现的显着对象。一个具有挑战性的问题是如何通过建模和利用图像间的关系来有效地捕获共同掌握线索。在本文中,我们提出了一个端到端的协作聚合和分布网络(Coadnet),以从多个图像中捕获显着和重复的视觉模式。首先,我们将显着性先验集成到骨干功能中,以通过在线内部引导结构来抑制冗余背景信息。之后,我们设计了一个两阶段的聚合和分布架构,以探索群体的语义互动并产生共同服务功能。在第一阶段,我们提出了一个群体 - 注意语义聚合模块,该模块模拟了图像间关系以生成群体的语义表示。在第二阶段,我们提出了一个封闭式的组分布模块,该模块在动态门控机制中向不同的个体自适应地分布了学习组的语义。最后,我们开发了一个针对COSOD任务量身定制的解码器的组一致性,该解码器在功能解码过程中维持组约束,以预测更一致的全分辨率共同效能图。拟议的Coadnet对四个盛行的COSOD基准数据集进行了评估,这表明了十个最先进的竞争对手的性能改善。
Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images. One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships. In this paper, we present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images. First, we integrate saliency priors into the backbone features to suppress the redundant background information through an online intra-saliency guidance structure. After that, we design a two-stage aggregate-and-distribute architecture to explore group-wise semantic interactions and produce the co-saliency features. In the first stage, we propose a group-attentional semantic aggregation module that models inter-image relationships to generate the group-wise semantic representations. In the second stage, we propose a gated group distribution module that adaptively distributes the learned group semantics to different individuals in a dynamic gating mechanism. Finally, we develop a group consistency preserving decoder tailored for the CoSOD task, which maintains group constraints during feature decoding to predict more consistent full-resolution co-saliency maps. The proposed CoADNet is evaluated on four prevailing CoSOD benchmark datasets, which demonstrates the remarkable performance improvement over ten state-of-the-art competitors.