论文标题
图像分类的加密机器学习解决方案的系统比较
A Systematic Comparison of Encrypted Machine Learning Solutions for Image Classification
论文作者
论文摘要
这项工作在私人图像分类的背景下,基于安全的计算技术对现有框架进行了全面审查。对这些方法的深入分析之后是仔细检查其性能成本,尤其是运行时和沟通开销。 为了进一步说明使用不同隐私保护技术时,使用四个最先进的库进行了实验,该库是在数据科学堆栈的核心实施安全计算的四个最先进的库:Pysyft:Pysyft和Crypten通过安全的多方计算,使用TF信任,利用可信赖的执行环境和依靠Heal-transornems of Heal-fromernors of Healomemothors of Healomsons of Soperrics op new-soprighors of Heal-fromerics of new-transicers of new-sopry of Healomemonson依靠,并依靠他 - 替代依靠。 我们的工作旨在通过可用性,运行时要求和准确性的观点来评估这些框架的适用性。为了更好地了解最新协议与目前用于数据科学家目前可用的差距,我们设计了三个神经网络体系结构,以通过上述四个框架中的每个框架获得安全的预测。在MNIST数据集上评估了两个网络,一个网络在疟疾细胞图像数据集上进行了评估。我们观察到了TF信任和隐脚的令人满意的性能,并指出所有框架都完美地保留了相应的明文模型的准确性。
This work provides a comprehensive review of existing frameworks based on secure computing techniques in the context of private image classification. The in-depth analysis of these approaches is followed by careful examination of their performance costs, in particular runtime and communication overhead. To further illustrate the practical considerations when using different privacy-preserving technologies, experiments were conducted using four state-of-the-art libraries implementing secure computing at the heart of the data science stack: PySyft and CrypTen supporting private inference via Secure Multi-Party Computation, TF-Trusted utilising Trusted Execution Environments and HE- Transformer relying on Homomorphic encryption. Our work aims to evaluate the suitability of these frameworks from a usability, runtime requirements and accuracy point of view. In order to better understand the gap between state-of-the-art protocols and what is currently available in practice for a data scientist, we designed three neural network architecture to obtain secure predictions via each of the four aforementioned frameworks. Two networks were evaluated on the MNIST dataset and one on the Malaria Cell image dataset. We observed satisfying performances for TF-Trusted and CrypTen and noted that all frameworks perfectly preserved the accuracy of the corresponding plaintext model.