论文标题
从意大利统治在词典产品图中的统治到图形的W型
From Italian domination in lexicographic product graphs to w-domination in graphs
论文作者
论文摘要
在本文中,我们表明,每个词典产品图的意大利统治数$ g \ circ h $可以用$ g $的五个不同的统治参数表示。这些参数可以在以下统一方法下定义,该方法涵盖了几个众所周知的统治参数的定义并引入了新的参数。令$ n(v)$表示$ v \ in v(g)$中的开放社区,让$ w =(w_0,w_1,\ dots,w_l)$是非负整数的向量,以便$ w_0 \ ge 1 $。我们说$ f:v(g)\ longrightArrow \ {0,1,\ dots,l \} $是$ w $ domination函数,如果$ f(n(v))= \ sum_ {u \ in n(v)} f(v)} f(v)f(v)f(v)f(u)\ ge w_i $ ge w_i $ for avertertex $ v $ v in n vertex $ v $ v in $ f(v) $ f $的重量定义为$ω(f)= \ sum_ {v \ in V(g)} f(v)$。 $ g $的$ w $ domination数字,用$γ_{w}(g)$表示,是$ g $上所有$ w $ domination功能中的最小权重。 If we impose restrictions on the minimum degree of $G$ when needed, under this approach we can define, for instance, the domination number, the total domination number, the $k$-domination number, the $k$-tuple domination number, the $k$-tuple total domination number, the Italian domination number, the total Italian domination number, and the $\{k\}$-domination number.具体来说,我们表明$γ_{i}(g \ circ h)=γ_{w}(g)$,其中$ w \ in \ {2 \} \ times \ times \ {0,1,1,2 \}^{l} $和$ l \ in \ in \ in \ {2,3 \} $。关于平等是否保留$ w_0,\ dots,w_l $的特定值的决定将取决于$ h $的统治数值。本文还为$γ_{w}(g)$提供了初步结果,并提出了对该主题进行详细研究的挑战。
In this paper, we show that the Italian domination number of every lexicographic product graph $G\circ H$ can be expressed in terms of five different domination parameters of $G$. These parameters can be defined under the following unified approach, which encompasses the definition of several well-known domination parameters and introduces new ones. Let $N(v)$ denote the open neighbourhood of $v\in V(G)$, and let $w=(w_0,w_1, \dots,w_l)$ be a vector of nonnegative integers such that $ w_0\ge 1$. We say that a function $f: V(G)\longrightarrow \{0,1,\dots ,l\}$ is a $w$-dominating function if $f(N(v))=\sum_{u\in N(v)}f(u)\ge w_i$ for every vertex $v$ with $f(v)=i$. The weight of $f$ is defined to be $ω(f)=\sum_{v\in V(G)} f(v)$. The $w$-domination number of $G$, denoted by $γ_{w}(G)$, is the minimum weight among all $w$-dominating functions on $G$. If we impose restrictions on the minimum degree of $G$ when needed, under this approach we can define, for instance, the domination number, the total domination number, the $k$-domination number, the $k$-tuple domination number, the $k$-tuple total domination number, the Italian domination number, the total Italian domination number, and the $\{k\}$-domination number. Specifically, we show that $γ_{I}(G\circ H)=γ_{w}(G)$, where $w\in \{2\}\times\{0,1,2\}^{l}$ and $l\in \{2,3\}$. The decision on whether the equality holds for specific values of $w_0,\dots,w_l$ will depend on the value of the domination number of $H$. This paper also provides preliminary results on $γ_{w}(G)$ and raises the challenge of conducting a detailed study of the topic.