论文标题

经典$ t \ bar t $,$ j \ bar t $和$ j t_a $的无限伪符号对称性 - 变形的CFTS

Infinite pseudo-conformal symmetries of classical $T \bar T$, $J \bar T $ and $J T_a$ - deformed CFTs

论文作者

Guica, Monica, Monten, Ruben

论文摘要

我们表明,$ t \ bar t,j \ bar t $和$ j t_a $ - 变形的经典cfts具有一组无限的对称性集,它们采用了二维形式的二维形式的形式。另外,如果种子CFT具有仿射$ u(1)$对称性,我们表明它也可以在变形的理论中生存,再次依赖于场。这些对称性可以理解为无限扩展的保形,而$ u(1)$ u(1)$对称是基础二维CFT,这是通过“动力学坐标”的棱镜来看出的。我们还使用汉密尔顿形式主义计算了相关指控的泊松支架代数。对于$ j \ bar t $和$ j t_a $变形,我们找到了两个功能性witt的副本-Kac -Moody代数。在$ t \ bar t $变形的情况下,我们表明也有可能获得两个witt代数的通勤副本。

We show that $T \bar T, J \bar T$ and $J T_a$ - deformed classical CFTs possess an infinite set of symmetries that take the form of a field-dependent generalization of two-dimensional conformal transformations. If, in addition, the seed CFTs possess an affine $U(1)$ symmetry, we show that it also survives in the deformed theories, again in a field-dependent form. These symmetries can be understood as the infinitely-extended conformal and $U(1)$ symmetries of the underlying two-dimensional CFT, seen through the prism of the "dynamical coordinates" that characterise each of these deformations. We also compute the Poisson bracket algebra of the associated conserved charges, using the Hamiltonian formalism. In the case of the $J \bar T$ and $J T_a$ deformations, we find two copies of a functional Witt - Kac-Moody algebra. In the case of the $T \bar T$ deformation, we show that it is also possible to obtain two commuting copies of the Witt algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源