论文标题

晶格遇到晶格:晶格立方体在晶格理论中的应用

Lattice meets lattice: Application of lattice cubature to models in lattice gauge theory

论文作者

Hartung, Tobias, Jansen, Karl, Kuo, Frances Y., Leövey, Hernan, Nuyens, Dirk, Sloan, Ian H.

论文摘要

在包括量子物理学在内的许多研究领域,高维积分很丰富。本文的目的是制定有效的递归策略,以应对具有具有低阶耦合的特殊产品结构的一类高维积分,这是由量子场理论的晶格仪理论中的模型激励的。这项工作的一个新元素是使用晶格立方体规则的潜在好处。晶格规则中的组结构与物理集成中的特殊结构相结合可以允许基于快速傅立叶变换的有效计算。考虑到两个和三个维度的量子机械转子和紧凑型$ u(1)$晶格理论的应用。

High dimensional integrals are abundant in many fields of research including quantum physics. The aim of this paper is to develop efficient recursive strategies to tackle a class of high dimensional integrals having a special product structure with low order couplings, motivated by models in lattice gauge theory from quantum field theory. A novel element of this work is the potential benefit in using lattice cubature rules. The group structure within lattice rules combined with the special structure in the physics integrands may allow efficient computations based on Fast Fourier Transforms. Applications to the quantum mechanical rotor and compact $U(1)$ lattice gauge theory in two and three dimensions are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源