论文标题
多模式乘车需求的联合预测:基于多任务多任务的深层学习方法
Joint predictions of multi-modal ride-hailing demands: a deep multi-task multigraph learning-based approach
论文作者
论文摘要
乘车平台通常为客户提供各种服务选项,例如独奏乘车服务,共享乘车服务等。通常可以期望对不同服务模式的需求相关,并且对一种服务模式的需求的预测可以从对其他服务模式的需求的历史观察结果中受益。此外,对多种服务模式的需求进行准确的联合预测可以帮助平台更好地分配和派遣车辆资源。尽管对于一种特定的服务模式,有大量有关乘车需求预测的文献,但几乎没有为多种服务模式的乘车乘车需求的共同预测所付出的努力。为了解决这个问题,我们提出了一种深层多任务多画画学习方法,该方法结合了两个组成部分:(1)多刻有多画卷积(MGC)网络,用于预测对不同服务模式的需求,以及(2)多任务学习模式,可在多个MGC网络中启用知识共享。更具体地说,建立了两个多任务学习结构。第一个是正规交叉任务学习,该学习在多个MGC网络的输入和输出之间建立了交叉任务连接。第二个是多线性关系学习,它在各种MGC网络的权重上实现了先前的张量正态分布。尽管不同的MGC网络之间没有混凝土桥梁,但这些网络的权重彼此约束并受到共同的先验分布。通过在曼哈顿的雇员驾驶数据集进行评估,我们表明我们的建议方法在不同乘车模式的预测准确性方面优于基准算法。
Ride-hailing platforms generally provide various service options to customers, such as solo ride services, shared ride services, etc. It is generally expected that demands for different service modes are correlated, and the prediction of demand for one service mode can benefit from historical observations of demands for other service modes. Moreover, an accurate joint prediction of demands for multiple service modes can help the platforms better allocate and dispatch vehicle resources. Although there is a large stream of literature on ride-hailing demand predictions for one specific service mode, little efforts have been paid towards joint predictions of ride-hailing demands for multiple service modes. To address this issue, we propose a deep multi-task multi-graph learning approach, which combines two components: (1) multiple multi-graph convolutional (MGC) networks for predicting demands for different service modes, and (2) multi-task learning modules that enable knowledge sharing across multiple MGC networks. More specifically, two multi-task learning structures are established. The first one is the regularized cross-task learning, which builds cross-task connections among the inputs and outputs of multiple MGC networks. The second one is the multi-linear relationship learning, which imposes a prior tensor normal distribution on the weights of various MGC networks. Although there are no concrete bridges between different MGC networks, the weights of these networks are constrained by each other and subject to a common prior distribution. Evaluated with the for-hire-vehicle datasets in Manhattan, we show that our propose approach outperforms the benchmark algorithms in prediction accuracy for different ride-hailing modes.